Developing the use of convolutional neural networking in benthic habitat classification and species distribution modelling

Author:

Fincham Jennifer I1ORCID,Wilson Christian2,Barry Jon1ORCID,Bolam Stefan1,French Geoffrey3ORCID

Affiliation:

1. Cefas, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK

2. Riverside Business Centre, Riverside Road, Lowestoft, Suffolk NR33 0TQ, UK

3. University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK

Abstract

Abstract Management of the marine environment is increasingly being conducted in accordance with an ecosystem-based approach, which requires an integrated approach to monitoring. Simultaneous acquisition of the different data types needed is often difficult, largely due to specific gear requirements (grabs, trawls, and video and acoustic approaches) and mismatches in their spatial and temporal scales. We present an example to resolve this using a convolutional neural network (CNN), using ad hoc multibeam data collected during multi-disciplinary surveys to predict the distribution of seabed habitats across the western English Channel. We adopted a habitat classification system, based on seabed morphology and sediment dynamics, and trained a CNN to label images generated from the multibeam data. The probability of the correct classification by the CNN varied per habitat, with accuracy above 60% for 85% of habitats in a training dataset. Statistical testing revealed that the spatial distribution of 57 of the 100 demersal fish and shellfish species sampled across the region during the surveys possessed a non-random relationship with the multibeam-derived habitats using CNN. CNNs, therefore, offer the potential to aid habitat mapping and facilitate species distribution modelling at the large spatial scales required under an ecosystem-based management framework.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3