Classification of Lakebed Geologic Substrate in Autonomously Collected Benthic Imagery Using Machine Learning

Author:

Geisz Joseph K.1ORCID,Wernette Phillipe A.1ORCID,Esselman Peter C.2ORCID

Affiliation:

1. Michigan Technological University, Great Lakes Research Center, Contractor to the US Geological Survey, Houghton, MI 49931, USA

2. US Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA

Abstract

Mapping benthic habitats with bathymetric, acoustic, and spectral data requires georeferenced ground-truth information about habitat types and characteristics. New technologies like autonomous underwater vehicles (AUVs) collect tens of thousands of images per mission making image-based ground truthing particularly attractive. Two types of machine learning (ML) models, random forest (RF) and deep neural network (DNN), were tested to determine whether ML models could serve as an accurate substitute for manual classification of AUV images for substrate type interpretation. RF models were trained to predict substrate class as a function of texture, edge, and intensity metrics (i.e., features) calculated for each image. Models were tested using a manually classified image dataset with 9-, 6-, and 2-class schemes based on the Coastal and Marine Ecological Classification Standard (CMECS). Results suggest that both RF and DNN models achieve comparable accuracies, with the 9-class models being least accurate (~73–78%) and the 2-class models being the most accurate (~95–96%). However, the DNN models were more efficient to train and apply because they did not require feature estimation before training or classification. Integrating ML models into benthic habitat mapping process can improve our ability to efficiently and accurately ground-truth large areas of benthic habitat using AUV or similar images.

Funder

Great Lakes Restoration Initiative

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3