Classification of Coastal Benthic Substrates Using Supervised and Unsupervised Machine Learning Models on North Shore of the St. Lawrence Maritime Estuary (Canada)

Author:

Labbé-Morissette Guillaume1ORCID,Leclercq Théau1ORCID,Charron-Morneau Patrick1,Gonthier Dominic1,Doiron Dany1,Chouaer Mohamed-Ali1,Munang Dominic Ndeh1

Affiliation:

1. Interdisciplinary Centre for the Development of Ocean Mapping (CIDCO), 115 Rue St Germain O local 1, Rimouski, QC G5L 4B6, Canada

Abstract

Classification of benthic substrates is a core necessity in many scientific fields like biology, ecology, or geology, with applications branching out to a variety of industries, from fisheries to oil and gas. In the first part, a comparative analysis of supervised learning algorithms has been conducted using geomorphometric features to generate benthic substrate maps of the coastal regions of the North Shore of Quebec in order to establish a quantitative assessment of performance to serve as a benchmark. In the second part, a new method using Gaussian mixture models is showcased on the same dataset. Finally, a side-by-side comparison of both methods is featured to provide a qualitative assessment of the new algorithm’s ability to match human intuition.

Funder

Department of Fisheries and Oceans from the Government of Canada under the Coastal Environmental Baseline Program

Publisher

MDPI AG

Reference34 articles.

1. NOAA (2023, May 15). How Much of the Ocean Have We Explored?, Available online: https://oceanexplorer.noaa.gov/facts/explored.html.

2. Seafloor mapping to support conservation planning in an ecologically unique fjord in Newfoundland and Labrador, Canada;Proudfoot;J. Coast. Conserv.,2020

3. Efficiencies of Various Grabs and Corers in Sampling Freshwater Benthos;Flannagan;J. Fish. Res. Board Can.,1970

4. Bouma, A. (1969). Methods for the Study of Sedimentary Structures, Wiley-Interscience.

5. Performance of multibeam echosounder backscatter-based classification for monitoring sediment distributions using multitemporal large-scale ocean data sets;Snellen;IEEE J. Ocean. Eng.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3