Uncrewed surface vehicle (USV) survey of walleye pollock, Gadus chalcogrammus, in response to the cancellation of ship-based surveys

Author:

De Robertis Alex1ORCID,Levine Mike1ORCID,Lauffenburger Nathan1,Honkalehto Taina1,Ianelli James1,Monnahan Cole C1ORCID,Towler Rick1,Jones Darin1,Stienessen Sarah1,McKelvey Denise1

Affiliation:

1. Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE Seattle, WA 98115, USA

Abstract

Abstract In 2020, the developing COVID-19 pandemic disrupted fisheries surveys to an unprecedented extent. Many surveys were cancelled, including those for walleye pollock (Gadus chalcogrammus) in the eastern Bering Sea (EBS), the largest fishery in the United States. To partially mitigate the loss of survey information, we deployed three uncrewed surface vehicles (USVs) equipped with echosounders to extend the ship-based acoustic-trawl time series of pollock abundance. Trawling was not possible from USVs, so an empirical relationship between pollock backscatter and biomass established from previous surveys was developed to convert USV backscatter observations into pollock abundance. The EBS is well suited for this approach since pollock dominate midwater fishes in the survey area. Acoustic data from the USVs were combined with historical surveys to provide a consistent fishery-independent index in 2020. This application demonstrates the unique capabilities of USVs and how they could be rapidly deployed to collect information on pollock abundance and distribution when a ship-based survey was not feasible. We note the limitations of this approach (e.g. higher uncertainty relative to previous ship-based surveys), but found the USV survey to be useful in informing the stock assessment in a situation where ship-based surveys were not possible.

Funder

NOAA Fisheries

Alaska Fisheries Science Center

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference52 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3