Affiliation:
1. Norwegian Computing Center, P.O. Box 114 Blindern, Oslo 0314, Norway
2. Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
Abstract
Abstract
Acoustic target classification is the process of assigning observed acoustic backscattering intensity to an acoustic category. A deep learning strategy for acoustic target classification using a convolutional network is developed, consisting of an encoder and a decoder, which allow the network to use pixel information and more abstract features. The network can learn features directly from data, and the learned feature space may include both frequency response and school morphology. We tested the method on multifrequency data collected between 2007 and 2018 during the Norwegian sandeel survey. The network was able to distinguish between sandeel schools, schools of other species, and background pixels (including seabed) in new survey data with an F1 score of 0.87 when tested against manually labelled schools. The network separated schools of sandeel and schools of other species with an F1 score of 0.94. A traditional school classification algorithm obtained substantially lower F1 scores (0.77 and 0.82) when tested against the manually labelled schools. To train the network, it was necessary to develop sampling and preprocessing strategies to account for unbalanced classes, inaccurate annotations, and biases in the training data. This is a step towards a method to be applied across a range of acoustic trawl surveys.
Funder
Norwegian Research Council
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献