Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach

Author:

Barbieri Sebastiano1ORCID,Mehta Suneela2,Wu Billy2,Bharat Chrianna3,Poppe Katrina2,Jorm Louisa1ORCID,Jackson Rod2ORCID

Affiliation:

1. Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia

2. Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand

3. National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia

Abstract

Abstract Background Machine learning-based risk prediction models may outperform traditional statistical models in large datasets with many variables, by identifying both novel predictors and the complex interactions between them. This study compared deep learning extensions of survival analysis models with Cox proportional hazards models for predicting cardiovascular disease (CVD) risk in national health administrative datasets. Methods Using individual person linkage of administrative datasets, we constructed a cohort of all New Zealanders aged 30–74 who interacted with public health services during 2012. After excluding people with prior CVD, we developed sex-specific deep learning and Cox proportional hazards models to estimate the risk of CVD events within 5 years. Models were compared based on the proportion of explained variance, model calibration and discrimination, and hazard ratios for predictor variables. Results First CVD events occurred in 61 927 of 2 164 872 people. Within the reference group, the largest hazard ratios estimated by the deep learning models were for tobacco use in women (2.04, 95% CI: 1.99, 2.10) and chronic obstructive pulmonary disease with acute lower respiratory infection in men (1.56, 95% CI: 1.50, 1.62). Other identified predictors (e.g. hypertension, chest pain, diabetes) aligned with current knowledge about CVD risk factors. Deep learning outperformed Cox proportional hazards models on the basis of proportion of explained variance (R2: 0.468 vs 0.425 in women and 0.383 vs 0.348 in men), calibration and discrimination (all P <0.0001). Conclusions Deep learning extensions of survival analysis models can be applied to large health administrative datasets to derive interpretable CVD risk prediction equations that are more accurate than traditional Cox proportional hazards models.

Funder

Health Research Council of New Zealand

New Zealand Health Research Council Clinical Research Training Fellowship

National Drug and Alcohol Research Centre (NDARC) and University of New South Wales Scientia PhD Scholarships

New Zealand Heart Foundation Hynds Senior Fellowship

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3