Comprehensive Factors for Predicting the Complications of Diabetes Mellitus: A Systematic Review

Author:

Erandathi Madurapperumage Anuradha1,Wang William Yu Chung1ORCID,Mayo Michael1,Lee Ching-Chi2

Affiliation:

1. University of Waikato, Hamilton, New Zealand

2. National Chen Kung University Hospital, Tainan, Taiwan

Abstract

Background: This article focuses on extracting a standard feature set for predicting the complications of diabetes mellitus by systematically reviewing the literature. It is conducted and reported by following the guidelines of PRISMA, a well-known systematic review and meta-analysis method. The research articles included in this study are extracted using the search engine "Web of Science" over eight years. The most common complications of diabetes, diabetic neuropathy, retinopathy, nephropathy, and cardiovascular diseases are considered in the study. Method: The features used to predict the complications are identified and categorised by scrutinising the standards of electronic health records. Result: Overall, 102 research articles have been reviewed, resulting in 59 frequent features being identified. Nineteen attributes are recognised as a standard in all four considered complications, which are age, gender, ethnicity, weight, height, BMI, smoking history, HbA1c, SBP, eGFR, DBP, HDL, LDL, total cholesterol, triglyceride, use of insulin, duration of diabetes, family history of CVD, and diabetes. The existence of a well-accepted and updated feature set for health analytics models to predict the complications of diabetes mellitus is a vital and contemporary requirement. A widely accepted feature set is beneficial for benchmarking the risk factors of complications of diabetes. Conclusion: This study is a thorough literature review to provide a clear state of the art for academicians, clinicians, and other stakeholders regarding the risk factors and their importance.

Funder

National Cheng Kung University Hospital

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3