In vitro assembly and cellulolytic activity of a β-glucosidase-integrated cellulosome complex

Author:

Hirano Katsuaki1,Saito Tsubasa1,Shinoda Suguru1,Haruki Mitsuru1,Hirano Nobutaka1

Affiliation:

1. Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan

Abstract

ABSTRACTThe cellulosome is a supramolecular multi-enzyme complex formed by protein interactions between the cohesin modules of scaffoldin proteins and the dockerin module of various polysaccharide-degrading enzymes. In general, the cellulosome exhibits no detectable β-glucosidase activity to catalyze the conversion of cellobiose to glucose. Because β-glucosidase prevents product inhibition of cellobiohydrolase by cellobiose, addition of β-glucosidase to the cellulosome greatly enhances the saccharification of crystalline cellulose and plant biomass. Here, we report the in vitro assembly and cellulolytic activity of a β-glucosidase-coupled cellulosome complex comprising the three major cellulosomal cellulases and full-length scaffoldin protein of Clostridium (Ruminiclostridium) thermocellum, and Thermoanaerobacter brockii β-glucosidase fused to the type-I dockerin module of C. thermocellum. We show that the cellulosome complex composed of nearly equal numbers of cellulase and β-glucosidase molecules exhibits maximum activity toward crystalline cellulose, and saccharification activity decreases as the enzymatic ratio of β-glucosidase increases. Moreover, β-glucosidase-coupled and β-glucosidase-supplemented cellulosome complexes similarly exhibit maximum activity toward crystalline cellulose (i.e. 1.7-fold higher than that of the β-glucosidase-free cellulosome complex). These results suggest that the enzymatic ratio of cellulase and β-glucosidase in the assembled complex is crucial for the efficient saccharification of crystalline cellulose by the β-glucosidase-integrated cellulosome complex.

Funder

Precursory Research for Embryonic Science and Technology

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3