Affiliation:
1. Charles A. Dana Research Institute for Scientists Emeriti, Drew University, Madison, New Jersey
2. Department of Chemical Engineering, University of Rochester, Rochester, New York
Abstract
SUMMARY
Biomass conversion to ethanol as a liquid fuel by the thermophilic and anaerobic clostridia offers a potential partial solution to the problem of the world's dependence on petroleum for energy. Coculture of a cellulolytic strain and a saccharolytic strain of
Clostridium
on agricultural resources, as well as on urban and industrial cellulosic wastes, is a promising approach to an alternate energy source from an economic viewpoint. This review discusses the need for such a process, the cellulases of clostridia, their presence in extracellular complexes or organelles (the cellulosomes), the binding of the cellulosomes to cellulose and to the cell surface, cellulase genetics, regulation of their synthesis, cocultures, ethanol tolerance, and metabolic pathway engineering for maximizing ethanol yield.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology,Infectious Diseases
Cited by
724 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献