Epsilon-poly-l-lysine increases disease resistance of citrus against postharvest green mold by activating amino acid metabolism and phenolic compounds biosynthesis

Author:

Zhang Xiong,Deng Qian,Wang Wenjun,Zhang Hongyan,Chen Ou,Zeng Kaifang

Abstract

AbstractAs a famous fruit worldwide, citrus is susceptible to green mold caused by Penicillium digitatum, which causes large economic losses every year. ε-Poly-l-lysine (ε-PL) is a novel preservative with strong inhibitory effects on fungi, and has the capacity to induce disease resistance in fruit, but the mechanism has been reported rarely, especially in citrus. In the present study, 800 μg/mL ε-PL and P. digitatum spores were inoculated in two different wounds on the citrus pericarp at an interval of 24 h. The results revealed that ε-PL inhibited that the development of green mold without direct contact with P. digitatum, indicating that the disease resistance of citrus was activated. Transcriptome analysis revealed that ε-PL activated amino acid metabolism and phenylpropanoid biosynthesis. Besides, the accumulation of glutamic acid, proline, arginine, serine, lysine, phenylalanine, and tyrosine were changed during storage. In phenylpropanoid biosynthesis, ε-PL increased phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate:coenzyme A ligase (4CL) activities and total phenolic and flavonoid contents. Importantly, among these phenolic compounds, ε-PL promoted the accumulation of individual phenolic compounds including ferulic acid, chlorogenic acid, p-coumaric acid, caffeic acid, gallic acid, catechins, epicatechin, and narirutin. In conclusion, ε-PL enhanced the resistance of citrus through amino acid metabolism and accumulation of phenolic compounds. These results improved the knowledge of the mechanism of ε-PL–induced disease resistance and provided a fresh theoretical basis for the use of ε-PL in postharvest citrus preservation.

Funder

National Key Research and Development Program of China

Project of Chongqing Science and Technology Bureau

Project of Sichuan Science and Technology Plan

Publisher

Oxford University Press (OUP)

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3