Affiliation:
1. Department of Earth Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
Abstract
SUMMARY
We measure the seismic anisotropy of the inner core using PKPbc-PKPdf and PKPab-PKPdf differential traveltimes, as a function of the angle ζ between the Earth’s rotation axis and the ray path in the inner core. Previous research relied heavily on body waves originating in the South Sandwich Islands (SSI) and travelling to seismic stations in Alaska to sample inner core velocities with low ζ (polar paths). These SSI polar paths are problematic because they have anomalous travel time anomalies, there are no ultra-polar SSI paths with ζ < 20° and they only cover a small part of the inner core. Here we improve constraints on inner core anisotropy using recently installed seismic stations at high latitudes, especially in the Antarctic, allowing us to measure ultra-polar paths with ζ ranging from 20°–5°. Our new data show that the SSI’s polar events are fast but still within the range of velocities measured from ray paths originating elsewhere. We further investigate the effect of mantle structure on our data set finding that the SSI data are particularly affected by fast velocities underneath the SSI originating from the subducted South Georgia slab, which is currently located just above the core mantle boundary. This fast velocity region results in mantle structure being misinterpreted as inner core structure and we correct for this using a P-wave tomographic model. We also analyse the effect of velocity changes on the ray paths within the inner core and find that faster velocities significantly change the ray path resulting in the ray travelling deeper into the inner core and spending more time in the inner core. To remove this effect, we propose a simple but effective method to correct each event-station pair for the velocity-dependent ray path changes in the inner core, producing a more reliable fractional traveltime measurement. Combining the new ultra-polar data with mantle and ray path corrections results in a more reliable inner core anisotropy measurement and an overall measured anisotropy of 1.9–2.3 per cent for the whole inner core. This is lower than previous body wave studies (3 per cent anisotropy) and in better agreement with the value of inner core anisotropy measured by normal modes (2 per cent anisotropy). We also identify regional variation of anisotropic structure in the top 500 km of the inner core, which appears to be more complex than simple hemispherical variations. These regional variations are independent of the SSI data and are still present when these data are excluded. We also find a potential innermost inner core with a radius of 690 km and stronger anisotropy.
Funder
European Research Council
Horizon 2020 Framework Programme
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献