Inner core anisotropy measured using new ultra-polar PKIKP paths

Author:

Brett Henry1,Deuss Arwen1

Affiliation:

1. Department of Earth Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands

Abstract

SUMMARY We measure the seismic anisotropy of the inner core using PKPbc-PKPdf and PKPab-PKPdf differential traveltimes, as a function of the angle ζ between the Earth’s rotation axis and the ray path in the inner core. Previous research relied heavily on body waves originating in the South Sandwich Islands (SSI) and travelling to seismic stations in Alaska to sample inner core velocities with low ζ (polar paths). These SSI polar paths are problematic because they have anomalous travel time anomalies, there are no ultra-polar SSI paths with ζ < 20° and they only cover a small part of the inner core. Here we improve constraints on inner core anisotropy using recently installed seismic stations at high latitudes, especially in the Antarctic, allowing us to measure ultra-polar paths with ζ ranging from 20°–5°. Our new data show that the SSI’s polar events are fast but still within the range of velocities measured from ray paths originating elsewhere. We further investigate the effect of mantle structure on our data set finding that the SSI data are particularly affected by fast velocities underneath the SSI originating from the subducted South Georgia slab, which is currently located just above the core mantle boundary. This fast velocity region results in mantle structure being misinterpreted as inner core structure and we correct for this using a P-wave tomographic model. We also analyse the effect of velocity changes on the ray paths within the inner core and find that faster velocities significantly change the ray path resulting in the ray travelling deeper into the inner core and spending more time in the inner core. To remove this effect, we propose a simple but effective method to correct each event-station pair for the velocity-dependent ray path changes in the inner core, producing a more reliable fractional traveltime measurement. Combining the new ultra-polar data with mantle and ray path corrections results in a more reliable inner core anisotropy measurement and an overall measured anisotropy of 1.9–2.3 per cent for the whole inner core. This is lower than previous body wave studies (3 per cent anisotropy) and in better agreement with the value of inner core anisotropy measured by normal modes (2 per cent anisotropy). We also identify regional variation of anisotropic structure in the top 500 km of the inner core, which appears to be more complex than simple hemispherical variations. These regional variations are independent of the SSI data and are still present when these data are excluded. We also find a potential innermost inner core with a radius of 690 km and stronger anisotropy.

Funder

European Research Council

Horizon 2020 Framework Programme

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3