Rheology of Hexagonal Close‐Packed (hcp) Iron

Author:

Nishihara Yu1ORCID,Doi Shunta1ORCID,Tsujino Noriyoshi23ORCID,Yamazaki Daisuke2,Matsukage Kyoko N.4,Tsubokawa Yumiko15,Yoshino Takashi2ORCID,Thomson Andrew R.6ORCID,Higo Yuji3ORCID,Tange Yoshinori3

Affiliation:

1. Geodynamics Research Center Ehime University Matsuyama Japan

2. Institute of Planetary Materials Okayama University Misasa Japan

3. Japan Synchrotron Radiation Research Institute Sayo‐gun Japan

4. Department of Natural and Environmental Science Teikyo University of Science Adachi‐ku, Tokyo Japan

5. Department of Earth and Planetary Sciences Kyushu University Fukuoka Japan

6. Department of Earth Sciences University College London London UK

Abstract

AbstractThe viscosity of hexagonal close‐packed (hcp) Fe is a fundamental property controlling the dynamics of the Earth's inner core. We studied the rheology of hcp‐Fe using high‐pressure and ‐temperature deformation experiments with in situ stress and strain measurements. Experiments were conducted using D111‐type and deformation‐DIA apparatuses at pressures of 16.3–22.6 GPa, temperatures of 423–923 K, and uniaxial strain rates of 1.52 × 10−6 to 8.81 × 10−5 s−1 in conjunction with synchrotron radiation. Experimental results showed that power‐law dislocation creep with a stress exponent of n = 4.0 ± 0.3, activation energy of E* = 240 ± 20 kJ/mol, and activation volume of V* = 1.4 ± 0.2 cm3/mol is dominant deformation mechanism at >∼800 K, whereas a mechanism with power‐law breakdown prevails at lower temperatures. An extrapolation of the power‐law dislocation creep flow law based on homologous temperature scaling suggests the viscosity of hcp‐Fe under inner core conditions is ≥∼1019 Pa s. If this power‐law dislocation creep mechanism is assumed to be the dominant mechanism in the Earth's inner core, the equatorial growth or translation mode mechanism may be the dominant geodynamical mechanism causing the observed inner core structure.

Funder

Japan Society for the Promotion of Science London

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3