Studying inner core and lower mantle structure with a combination of PKP and converted SKP and PKS waves

Author:

Hosseini Samira1,Thomas Christine1ORCID,Garnero Edward J2,Abreu Rafael1

Affiliation:

1. Universität Münster, Institute of Geophysics , 48149 Münster , Germany

2. Arizona State University, School of Earth and Space Tempe , Tempe, AZ 85287 , USA

Abstract

SUMMARYStructure of the inner core is often measured through traveltime differences between waves that enter the inner core (PKPdf) and waves that travel through the outer core only (PKPab and PKPbc). Here we extend the method to converted waves PKSdf and SKPdf and compare results to PKP wave measurements. PKSdf and SKPdf have a very similar path to PKPdf and if velocity variations are present in the inner core, all three wave types should experience them equally. Since traveltime deviations can be due to velocity changes (either isotropic or anisotropy) as well as wave path deviations born from heterogeneity, we simultaneously investigate wave path directions and traveltimes of PKP, SKP and PKS waves for several source-array combinations. One of the path geometries is the anomalous polar corridor from South Sandwich to Alaska, which has strong traveltimes anomalies for PKPdf relative to more normal equatorial path geometries. Here we use array methods and determine slowness, traveltime and backazimuth deviations and compare them to synthetic data. We find that path deviations from theoretical values are present in all wave types and paths, but also that large scatter exists. Although some of the path deviations can be explained by mislocation vectors and crustal variations, our measurements argue that mantle structure has to be considered when investigating inner core anisotropy. Our polar path data show similar traveltime residuals as previously published, but we also find slowness residuals for this path. Interestingly, SKPdf and PKSdf for the South Sandwich to Alaska path show traveltime residuals that are partly opposite to those for PKPdf, possibly due to an interaction with a localized ultra-low velocity zone where waves enter the core.

Funder

DFG

NSF

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3