Three-Dimensional Characterization of Dry Particle Coating Structures Originating from the Mechano-fusion Process

Author:

Friebel Judith M1ORCID,Ditscherlein Ralf1ORCID,Ditscherlein Lisa1ORCID,Peuker Urs A1ORCID

Affiliation:

1. Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg , Agricolastraße 1, Freiberg 09599 , Germany

Abstract

Abstract Dry particle coating processes are of key importance for creating functionalized materials. By a change in surface structure, initiated during coating, a surface property change and thus functionalization can be achieved. This study introduces an innovative approach employing 3D X-ray micro-computed tomography (micro-CT) to characterize coated particles, consisting of spherical alumina particles (d50 = 45.64 μm), called hosts, surrounded by spherical polystyrene particles (d50 = 3.5 μm), called guests. The formed structures, hetero-aggregates, are generated by dry particle coating using mechano-fusion (MF). A deeper understanding of the influence of MF process parameters on the coating structures is a crucial step toward tailoring of coating structure, resulting surface property and functionalization. Therefore, the influence of rotational speed, process time, and total mechanical energy input during MF is explored. Leveraging micro-CT data, acquired of coated particles, enables non-stereologically biased and quantitative coating structure analysis. The guest's coating thickness is analyzed using the maximum inscribed sphere and ray method, two different local thickness measurement approaches. Particle-discrete information of the coating structure are available after a proper image processing workflow is implemented. Coating efficiency and guest's neighboring relations (nearest neighbor distance and number of neighbors inside search radius) are evaluated.

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3