Multidimensional binary search trees used for associative searching

Author:

Bentley Jon Louis1

Affiliation:

1. Stanford Univ., Stanford, CA

Abstract

This paper develops the multidimensional binary search tree (or k -d tree, where k is the dimensionality of the search space) as a data structure for storage of information to be retrieved by associative searches. The k -d tree is defined and examples are given. It is shown to be quite efficient in its storage requirements. A significant advantage of this structure is that a single data structure can handle many types of queries very efficiently. Various utility algorithms are developed; their proven average running times in an n record file are: insertion, O (log n ); deletion of the root, O ( n ( k -1)/ k ); deletion of a random node, O (log n ); and optimization (guarantees logarithmic performance of searches), O ( n log n ). Search algorithms are given for partial match queries with t keys specified [proven maximum running time of O ( n ( k - t )/ k )] and for nearest neighbor queries [empirically observed average running time of O (log n ).] These performances far surpass the best currently known algorithms for these tasks. An algorithm is presented to handle any general intersection query. The main focus of this paper is theoretical. It is felt, however, that k -d trees could be quite useful in many applications, and examples of potential uses are given.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference7 articles.

1. Friedman J.H. Bentley J.L. and Finkel R.A. An algorithm for finding best matches in logarithmic time. Stanford CS Rep. 75--482. Friedman J.H. Bentley J.L. and Finkel R.A. An algorithm for finding best matches in logarithmic time. Stanford CS Rep. 75--482.

2. Blum M. Floyd R.W. Pratt V. Rivest R.L. and Tarjan R.E. Time bounds for selection. Stanford CS Rep. 73-349. Blum M. Floyd R.W. Pratt V. Rivest R.L. and Tarjan R.E. Time bounds for selection. Stanford CS Rep. 73-349.

3. Quad trees a data structure for retrieval on composite keys

Cited by 4211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3