The ADAR1 editome reveals drivers of editing-specificity for ADAR1-isoforms

Author:

Kleinova Renata1,Rajendra Vinod1,Leuchtenberger Alina F2,Lo Giudice Claudio3,Vesely Cornelia1,Kapoor Utkarsh1,Tanzer Andrea1ORCID,Derdak Sophia4,Picardi Ernesto35ORCID,Jantsch Michael F1ORCID

Affiliation:

1. Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna , Schwarzspanierstrasse 17, A-1090 Vienna , Austria

2. Center for Integrative Bioinformatics Vienna (CIBIV) Max Perutz Labs, University of Vienna and Medical University of Vienna , Campus Vienna Biocenter 5, A-1030 Vienna, Austria

3. Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, University Campus “Ernesto Quagliariello” , Via Orabona 4, Bari , Italy

4. Core Facilities Medical University of Vienna , Spitalgasse 23, A-1090 Vienna , Austria

5. Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR) , Via Amendola 122, Bari , Italy

Abstract

Abstract Adenosine deaminase acting on RNA ADAR1 promotes A-to-I conversion in double-stranded and structured RNAs. ADAR1 has two isoforms transcribed from different promoters: cytoplasmic ADAR1p150 is interferon-inducible while ADAR1p110 is constitutively expressed and primarily localized in the nucleus. Mutations in ADAR1 cause Aicardi – Goutières syndrome (AGS), a severe autoinflammatory disease associated with aberrant IFN production. In mice, deletion of ADAR1 or the p150 isoform leads to embryonic lethality driven by overexpression of interferon-stimulated genes. This phenotype is rescued by deletion of the cytoplasmic dsRNA-sensor MDA5 indicating that the p150 isoform is indispensable and cannot be rescued by ADAR1p110. Nevertheless, editing sites uniquely targeted by ADAR1p150 remain elusive. Here, by transfection of ADAR1 isoforms into ADAR-less mouse cells we detect isoform-specific editing patterns. Using mutated ADAR variants, we test how intracellular localization and the presence of a Z-DNA binding domain-α affect editing preferences. These data show that ZBDα only minimally contributes to p150 editing-specificity while isoform-specific editing is primarily directed by the intracellular localization of ADAR1 isoforms. Our study is complemented by RIP-seq on human cells ectopically expressing tagged-ADAR1 isoforms. Both datasets reveal enrichment of intronic editing and binding by ADAR1p110 while ADAR1p150 preferentially binds and edits 3’UTRs.

Funder

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3