Affiliation:
1. Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
2. Robert W Holley Center for Agriculture and Health, Agricultural Research Service, USDA, Ithaca, NY, USA
Abstract
ABSTRACT
Background
Iron (Fe) and zinc (Zn) deficiencies are global health problems affecting 20% and 33% of the world's population, respectively. Lentil (Lens culinaris Medik.), part of the staple food supply in many countries, can be a potential vehicle for Fe and Zn fortification.
Objective
We developed a dual-fortification protocol to fortify 3 milled lentil product types (LPTs) [red-football (RF), red-split (RS), and yellow-split (YS)], with NaFeEDTA and ZnSO4.H2O to increase the bioavailable content of Fe and Zn.
Methods
Appropriate Fe and Zn doses were determined to fortify lentils based on RDAs. Relative Fe bioavailability (RFeB%) and phytic acid (PA) content were assessed using an in vitro Caco-2 cell bioassay and PA analysis, respectively. One-factor ANOVA determined the differences in colorimetric score; concentrations of Fe, Zn, and PA; and RFeB% among samples. The least significant difference was calculated with significance level set at P < 0.05.
Results
Fe and Zn concentration and RFeB% increased and PA concentration decreased significantly in dual-fortified lentils. Dual-fortified lentil samples had higher RFeB% compared with Fe-fortified (single) samples in all 3 LPTs, whereas RFeB% decreased in Zn-fortified (single) RF and YS samples by 43.4% and 36%, respectively. The RF, RS, and YS samples, fortified with 16 mg Fe and 8 mg Zn/100 g of lentils, provided 27 mg Fe and 14 mg Zn, 28 mg Fe and 13.4 mg Zn, and 29.9 mg Fe and 12.1 mg Zn, respectively. RFeB% of RF, RS, and YS lentil samples increased by 91–307%, 114–522%, and 122–520%, respectively. Again, PA concentrations of RF, RS, and YS lentils were reduced by 0.63–0.53, 0.83–0.71, and 0.96–0.79 mg/g, respectively.
Conclusions
Dual-fortified lentil consumption can cost-effectively provide a significant part of the daily bioavailable Fe and Zn requirements of people with these 2 globally important micronutrient deficiencies.
Publisher
Oxford University Press (OUP)
Subject
Nutrition and Dietetics,Food Science,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献