Delphinidin-induced autophagy protects pancreatic β cells against apoptosis resulting from high-glucose stress via AMPK signaling pathway

Author:

Lai Dengni1,Huang Mingyong2,Zhao Lingyan1,Tian Yan1,Li Yong1,Liu Dongpo3,Wu Yanyang1ORCID,Deng Fangming1

Affiliation:

1. Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China

2. Tianxiang Biotechnology Co., Ltd of Hunan, Shaoyang 422000, China

3. State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China

Abstract

Abstract Hyperglycemia, a diagnostic characteristic of diabetes mellitus, is detrimental to pancreatic β cells. Delphinidin, a member of the anthocyanin family, inhibits glucose absorption, increases glucagon-like peptide-1 (GLP-1) secretion, and improves insulin secretion in diabetes. However, whether delphinidin plays a protective role in pancreatic β-cell mass and function is not clear. In this study, delphinidin was found to decrease the high-glucose-induced apoptosis of RIN-m5F pancreatic β cells. In addition, delphinidin induced autophagy in RIN-m5F cells under the normal and high-glucose conditions, while 3-methyladenine (3-MA) inhibition of autophagy significantly diminished the protective role of delphinidin against high-glucose-induced apoptosis of pancreatic β cells. Delphinidin also decreased the level of cleaved caspase 3 and increased the phosphorylation level of AMP-activated protein kinase α (AMPKα) Thr172. Compound C, an AMPK inhibitor, was found to decrease the ratio of LC3-II/LC3-I, and the apoptotic rate of high-glucose-injured cells was increased after treatment with delphinidin, indicating that delphinidin attenuated the negative effects of high-glucose stress to cells. In conclusion, our data demonstrate that delphinidin protects pancreatic β cells against high-glucose-induced injury by autophagy regulation via the AMPK signaling pathway. These findings might shed light on the underlying mechanisms of diabetes and help improve the prevention and therapy of this common disease.

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3