A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli

Author:

Li Qi12,Sun Bingbing2,Chen Jun2,Zhang Yiwen2,Jiang Yu3,Yang Sheng23

Affiliation:

1. College of Life Sciences, Sichuan Normal University, Chengdu 610101, China

2. Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China

3. Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China

Abstract

Abstract The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (Cas9)-based genome editing tool pCas/pTargetF system that we established previously has been widely used in Escherichia coli MG1655. However, this system failed to manipulate the genome of E. coli BL21(DE3), owing to the potential higher leaky transcription of the gRNA-pMB1 specific to pTargetF in this strain. In this study, we modified the pCas/pTargetF system by replacing the promoter of gRNA-pMB1 with a tightly regulated promoter PrhaB, changing the replicon of pCas to a nontemperature-sensitive replicon, adding the sacB gene into pCas, and replacing the original N20-specific sequence of pTargetF with ccdB gene. We call this updated system as pEcCas/pEcgRNA. We found that gRNA-pMB1 indeed showed a slightly higher leaky expression in the pCas/pTargetF system compared with pEcCas/pEcgRNA. We also confirmed that genome editing can successfully be performed in BL21(DE3) by pEcCas/pEcgRNA with high efficiency. The application of pEcCas/pEcgRNA was then expanded to the E. coli B strain BL21 StarTM (DE3), K-12 strains MG1655, DH5α, CGMCC3705, Nissle1917, W strain ATCC9637, and also another species of Enterobacteriaceae, Tatumella citrea DSM13699, without any specific modifications. Finally, the plasmid curing process was optimized to shorten the time from $\sim$60 h to $\sim$32 h. The entire protocol (including plasmid construction, editing, electroporation and mutant verification, and plasmid elimination) took only $\sim$5.5 days per round in the pEcCas/pEcgRNA system, whereas it took $\sim$7.5 days in the pCas/pTargetF system. This study established a faster-acting genome editing tool that can be used in a wider range of E. coli strains and will also be useful for other Enterobacteriaceae species.

Funder

National Natural Science Foundation of China

’Key New Drug Creation and Manufacturing Program’, China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3