Study on the safety assessment and protection design of human exposure to low-frequency magnetic fields in electric vehicles

Author:

Tan LiGang12,Li GaoLei12,Xie QiaoLing3,Xiang Yunxiu4,Luo Baojun12

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body , Ministry of Education, , Changsha 410082 , China

2. Hunan University , Ministry of Education, , Changsha 410082 , China

3. Shengjing Hospital of China Medical University , PRC National Health and Safety Commission (NHSC), Shenyang 110134 , China

4. Pan Asia Technical Automotive Center Co., Ltd , PRC Ministry of Transport (MOT), Shanghai 201201 , China

Abstract

Abstract As the power performance of electric vehicles continues to improve, the human body may be exposed to electromagnetic threats in the cabin. This study tested an electric vehicle to analyze the low-frequency magnetic field distribution in the cabin and to assess the safety of human low-frequency magnetic field exposure. A simulation analysis of human electromagnetic exposure was carried out to obtain the magnetic flux density, induced electric field strength and induced current density, and the test results were much lower than the limits specified in GB8702-2014 and the International Commission on Non-Ionizing Radiation Protection, and the relative error between the simulation results and the test results was <15%. This paper investigates the frequency, driving current, vehicle body material and cable layout to explore the law of human body induced electromagnetic field changing with power cable current, and provides theoretical reference for the design of human body low-frequency magnetic field protection.

Funder

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3