Uncertainty quantification in the assessment of human exposure to pulsed or multi-frequency fields

Author:

Giaccone LucaORCID

Abstract

Abstract Objective: pulsed fields or waveforms with multi-frequency content have to be assessed with suitable methods. This paper deals with the uncertainty quantification associated to these methods. Approach: among all possible approaches, the weighted peak method (WPM) is widely employed in standards and guidelines, therefore, in this paper, we consider its implementation both in time domain and frequency domain. For the uncertainty quantification the polynomial chaos expansion theory is used. By means of a sensitivity analysis, for several standard waveforms, the parameters with more influence on the exposure index are identified and their sensitivity indices are quantified. The output of the sensitivity analysis is used to set up a parametric analysis with the aim of evaluating the uncertainty propagation of the analyzed methods and, finally, also several measured waveforms generated by a welding gun are tested. Main results: it is shown that the time domain implementation of the weighted peak method provides results in agreement with the basilar mechanisms of electromagnetic induction and electrostimulation. On the opposite, the WPM in frequency domain is found to be too sensitive to parameters that should not influence the exposure index because its weight function includes sharp variations of the phase centered on real zeros and poles. To overcome this issue, a new definition for the phase of the weight function in frequency domain is proposed. Significance: it is shown that the time domain implementation of the WPM is the more accurate and precise. The standard WPM in frequency domain has some issues that can be avoided with the proposed modification of the phase definition of the weight function. Finally, all the codes used in this paper are hosted on a GitHub and can be freely accessed at https://github.com/giaccone/wpm_uncertainty.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3