Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine

Author:

Brault Charlotte123ORCID,Doligez Agnès23,Cunff Le123,Coupel-Ledru Aude4ORCID,Simonneau Thierry4,Chiquet Julien5,This Patrice23,Flutre Timothée6

Affiliation:

1. Institut Français de la Vigne et du Vin, Montpellier F-34398, France

2. UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France

3. UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France

4. LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier 34000, France

5. AgroParisTech, UMR MIA, Paris 75005, France

6. Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Gif-sur-Yvette 91190, France

Abstract

Abstract Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.

Funder

SelVi and FruitSelGen

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Reference109 articles.

1. Construction and characterization of BAC libraries from major grapevine cultivars;Adam-Blondon;Theor Appl Genet,2005

2. Choice of V for V-fold cross-validation in least-squares density estimation;Arlot;J Mach Learn Res,2016

3. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L;Arruda;Mol Breed,2016

4. Benchmarking parametric and machine learning models for genomic prediction of complex traits;Azodi;G3 (Bethesda)),2019

5. Fitting linear mixed-effects models using lme4;Bates;arXiv,2014

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3