Enhancing grapevine breeding efficiency through genomic prediction and selection index

Author:

Brault Charlotte12ORCID,Segura Vincent13,Roques Maryline12,Lamblin Pauline2,Bouckenooghe Virginie12,Pouzalgues Nathalie4,Cunty Constance24,Breil Matthieu12,Frouin Marina5,Garcin Léa25,Camps Louise5,Ducasse Marie-Agnès2,Romieu Charles13,Masson Gilles24,Julliard Sébastien5,Flutre Timothée6,Le Cunff Loïc12

Affiliation:

1. UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier , Montpellier 34398 , France

2. Institut Français de la vigne et du vin, Pôle National Matériel Végétal , Le Grau du Roi 30240 , France

3. UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier , Montpellier 34398 , France

4. Centre du Rosé , Vidauban 83550 , France

5. Conservatoire du Vignoble Charentais, Institut de Formation de Richemont , Cherves-Richemont 16370 , France

6. INRAE, CNRS, AgroParisTech, Université Paris-Saclay, GQE—Le Moulon , Gif-sur-Yvette 91190 , France

Abstract

Abstract Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy mildews. However, the traditional process remains time-consuming, taking 20–25 years, and demands the evaluation of new traits to enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype, and was carried out on a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a methodology using molecular markers to predict genotypic values. In our study, we focused on 2 existing grapevine breeding programs: Rosé wine and Cognac production. In these programs, several families were created through crosses of emblematic and interspecific resistant varieties to powdery and downy mildews. Thirty traits were evaluated for each program, using 2 genomic prediction methods: Genomic Best Linear Unbiased Predictor and Least Absolute Shrinkage Selection Operator. The results revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait characteristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.

Funder

CASDAR

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3