The amino acid substitution affects cellular response to mistranslation

Author:

Berg Matthew D12ORCID,Zhu Yanrui1,Ruiz Bianca Y2,Loll-Krippleber Raphaël3,Isaacson Joshua4,San Luis Bryan-Joseph5,Genereaux Julie1,Boone Charles5ORCID,Villén Judit2,Brown Grant W3ORCID,Brandl Christopher J1ORCID

Affiliation:

1. Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada

2. Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA

3. Department of Biochemistry, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S, Canada

4. Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada

5. Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S, Canada

Abstract

Abstract Mistranslation, the misincorporation of an amino acid not specified by the “standard” genetic code, occurs in all organisms. tRNA variants that increase mistranslation arise spontaneously and engineered tRNAs can achieve mistranslation frequencies approaching 10% in yeast and bacteria. Interestingly, human genomes contain tRNA variants with the potential to mistranslate. Cells cope with increased mistranslation through multiple mechanisms, though high levels cause proteotoxic stress. The goal of this study was to compare the genetic interactions and the impact on transcriptome and cellular growth of two tRNA variants that mistranslate at a similar frequency but create different amino acid substitutions in Saccharomyces cerevisiae. One tRNA variant inserts alanine at proline codons whereas the other inserts serine for arginine. Both tRNAs decreased growth rate, with the effect being greater for arginine to serine than for proline to alanine. The tRNA that substituted serine for arginine resulted in a heat shock response. In contrast, heat shock response was minimal for proline to alanine substitution. Further demonstrating the significance of the amino acid substitution, transcriptome analysis identified unique up- and down-regulated genes in response to each mistranslating tRNA. Number and extent of negative synthetic genetic interactions also differed depending upon type of mistranslation. Based on the unique responses observed for these mistranslating tRNAs, we predict that the potential of mistranslation to exacerbate diseases caused by proteotoxic stress depends on the tRNA variant. Furthermore, based on their unique transcriptomes and genetic interactions, different naturally occurring mistranslating tRNAs have the potential to negatively influence specific diseases.

Funder

Natural Sciences and Engineering Research Council of Canada

NSERC

Canadian Institutes of Health Research

Keck Foundation

NIH

NSERC Alexander Graham Bell Canada Graduate Scholarship

Natural Science Foundation Graduate Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3