Mistranslating tRNA variants have anticodon- and sex-specific impacts onDrosophila melanogaster

Author:

Isaacson Joshua R.ORCID,Berg Matthew D.ORCID,Jagiello Jessica,Yeung William,Charles Brendan,Villén Judit,Brandl Christopher J.,Moehring Amanda J.

Abstract

ABSTRACTTransfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNAServariants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNAServariant that misincorporates serine at valine codons (V➔S) and the other that misincorporates serine at threonine codons (TàS). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V➔S variant extended embryonic, larval, and pupal development whereas the T➔S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans.PLAIN LANGUAGE SUMMARYMutant tRNA genes can cause mistranslation, the misincorporation of amino acids into proteins, and are associated with several human diseases. This study investigated the role of two tRNA variants that cause threonine-to-serine (T➔S) or valine-to-serine (V➔S) substitution. Both variants caused developmental delays and lethality in both sexes and increase prevalence of deformities in females. Surprisingly, female T➔S and V➔S flies experienced increased lifespan and mistranslating males and females showed improved locomotion. These results suggest that mistranslation has both positive and negative effects that depend on the tRNA variant and sex of the fly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3