A locomotor assay reveals deficits in heterozygous Parkinson’s disease model and proprioceptive mutants in adult Drosophila

Author:

Aggarwal AmanORCID,Reichert Heinrich,VijayRaghavan K.ORCID

Abstract

Severe locomotor impairment is a common phenotype of neurodegenerative disorders such as Parkinson’s disease (PD). Drosophila models of PD, studied for more than a decade, have helped in understanding the interaction between various genetic factors, such as parkin and PINK1, in this disease. To characterize locomotor behavioral phenotypes for these genes, fly climbing assays have been widely used. While these simple current assays for locomotor defects in Drosophila mutants measure some locomotor phenotypes well, it is possible that detection of subtle changes in behavior is important to understand the manifestation of locomotor disorders. We introduce a climbing behavior assay which provides such fine-scale behavioral data and tests this proposition for the Drosophila model. We use this inexpensive, fully automated assay to quantitatively characterize the climbing behavior at high parametric resolution in 3 contexts. First, we characterize wild-type flies and uncover a hitherto unknown sexual dimorphism in climbing behavior. Second, we study climbing behavior of heterozygous mutants of genes implicated in the fly PD model and reveal previously unreported prominent locomotor defects in some of these heterozygous fly lines. Finally, we study locomotor defects in a homozygous proprioceptory mutation (Trp-γ1) known to affect fine motor control in Drosophila. Moreover, we identify aberrant geotactic behavior in Trp-γ1 mutants, thereby opening up a finer assay for geotaxis and its genetic basis. Our assay is therefore a cost-effective, general tool for measuring locomotor behaviors of wild-type and mutant flies in fine detail and can reveal subtle motor defects.

Funder

TIFR | National Centre for Biological Sciences

Council of Scientific and Industrial Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3