The combination of DNA methylation and positive regulation of anthocyanin biosynthesis by MYB and bHLH transcription factors contributes to the petal blotch formation in Xibei tree peony

Author:

Zhu Jin123,Wang Yizhou123,Wang Qianyu123,Li Bing123,Wang Xiaohan123,Zhou Xian123,Zhang Hechen4,Xu Wenzhong123,Li Shanshan123,Wang Liangsheng123

Affiliation:

1. Chinese Academy of Sciences Key Laboratory of Plant Resources, Institute of Botany, , Beijing 100093, China

2. China National Botanical Garden Beijing 100093, China

3. University of Chinese Academy of Sciences , Beijing 100049, China

4. Henan Academy of Agricultural Sciences Horticulture Research Institute, , Zhengzhou 450002, China

Abstract

Abstract Xibei tree peony is a distinctive cultivar group that features red–purple blotches in petals. Interestingly, the pigmentations of blotches and non-blotches are largely independent of one another. The underlying molecular mechanism had attracted lots of attention from investigators, but was still uncertain. Our present work demonstrates the factors that are closely related to blotch formation in Paeonia rockii ‘Shu Sheng Peng Mo’. Non-blotch pigmentation is prevented by the silencing of anthocyanin structural genes, among which PrF3H, PrDFR, and PrANS are the three major genes. We characterized two R2R3-MYBs as the key transcription factors that control the early and late anthocyanin biosynthetic pathways. PrMYBa1, which belongs to MYB subgroup 7 (SG7) was found to activate the early biosynthetic gene (EBG) PrF3H by interacting with SG5 member PrMYBa2 to form an ‘MM’ complex. The SG6 member PrMYBa3 interacts with two SG5 (IIIf) bHLHs to synergistically activate the late biosynthetic genes (LBGs) PrDFR and PrANS, which is essential for anthocyanin accumulation in petal blotches. The comparison of methylation levels of the PrANS and PrF3H promoters between blotch and non-blotch indicated a correlation between hypermethylation and gene silencing. The methylation dynamics of PrANS promoter during flower development revealed a potential early demethylating reaction, which may have contributed to the particular expression of PrANS solely in the blotch area. We suggest that the formation of petal blotch may be highly associated with the cooperation of transcriptional activation and DNA methylation of structural gene promoters.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3