Synergistic actions of 3 MYB transcription factors underpin blotch formation in tree peony

Author:

Luan Yuting1,Tao Jun12ORCID,Zhao Daqiu1ORCID

Affiliation:

1. College of Horticulture and Landscape Architecture, Yangzhou University , Yangzhou 225009, Jiangsu , China

2. Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou 225009, Jiangsu , China

Abstract

Abstract Blotches in floral organs attract pollinators and promote pollination success. Tree peony (Paeonia suffruticosa Andr.) is an internationally renowned cut flower with extremely high ornamental and economic value. Blotch formation on P. suffruticosa petals is predominantly attributed to anthocyanin accumulation. However, the endogenous regulation of blotch formation in P. suffruticosa remains elusive. Here, we identified the regulatory modules governing anthocyanin-mediated blotch formation in P. suffruticosa petals, which involves the transcription factors PsMYB308, PsMYBPA2, and PsMYB21. PsMYBPA2 activated PsF3H expression to provide sufficient precursor substrate for anthocyanin biosynthesis. PsMYB21 activated both PsF3H and PsFLS expressions and promoted flavonol biosynthesis. The significantly high expression of PsMYB21 in nonblotch regions inhibited blotch formation by competing for anthocyanin biosynthesis substrates, while conversely, its low expression in the blotch region promoted blotch formation. PsMYB308 inhibited PsDFR and PsMYBPA2 expressions to directly prevent anthocyanin-mediated blotch formation. Notably, a smaller blotch area, decreased anthocyanin content, and inhibition of anthocyanin structural gene expression were observed in PsMYBPA2-silenced petals, while the opposite phenotypes were observed in PsMYB308-silenced and PsMYB21-silenced petals. Additionally, PsMYBPA2 and PsMYB308 interacted with PsbHLH1-3, and their regulatory intensity on target genes was synergistically regulated by the PsMYBPA2-PsbHLH1-3 and PsMYB308-PsbHLH1-3 complexes. PsMYB308 also competitively bound to PsbHLH1-3 with PsMYBPA2 to fine-tune the regulatory network to prevent overaccumulation of anthocyanin in blotch regions. Overall, our study uncovers a complex R2R3-MYB transcriptional regulatory network that governs anthocyanin-mediated blotch formation in P. suffruticosa petals, providing insights into the molecular mechanisms underlying blotch formation in P. suffruticosa.

Funder

National Key R&D Program of China

National Forest and Grass Science and Technology Innovation

Industrial Technology System of Jiangsu Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3