Genome-Wide Methylation Landscape Uncovers the Role of DNA Methylation in Ramie (Boehmeria nivea L.) Bast Fiber Growth

Author:

Li Fu123,Luo Bingbing1,Wang Yanzhou3,Rao Jing3,Gao Song2,Peng Qingzhong1ORCID,Liu Touming2,Yi Langbo1

Affiliation:

1. College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China

2. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China

3. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China

Abstract

Ramie is one of the most important fiber crops in China, with fibers extracted from stem barks having been used as textile materials for thousands of years. DNA methylation is an important epigenetic modification involved in plant growth and development. However, the role of methylation in ramie fiber growth remains poorly understood. In the present study, we investigated the DNA methylation landscape of the nuclear genome in bark sections taken from the top (TPS) and the middle (MPS) of the stems of ramie plants, which represent different stages of fiber growth, using whole-genome bisulfite sequencing. We detected 7,709,555 and 8,508,326 5-methylcytosines in the TPS and MPS genomes, respectively. The distribution of methylation across three sequence contexts, CG, CHG, and CHH, varied greatly among gene elements, with methylation at CHH being the most prevalent. Comparison of methylation levels between the TPS and MPS genomes revealed 23.162 Mb of differentially methylated genomic regions, encompassing 9485 genes. Among these differentially methylated genes, 841 exhibited altered expression in the MPS genome. Notably, an SND2 ortholog Bni05G006779 showed a negative correlation between its expression and methylation levels. Overexpression of Bni05G006779 in Arabidopsis dramatically increased the number of xylem fibers and the secondary wall thickness of the fibers in the stems of transgenic plants. These findings provide important insights into the involvement of DNA methylation in regulating ramie fiber growth.

Funder

Natural Science Foundation of Hunan Province

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3