Mechanisms of Vascular Remodeling in Hypertension

Author:

Humphrey Jay D1ORCID

Affiliation:

1. Department of Biomedical Engineering, Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut, USA

Abstract

Abstract Hypertension is both a cause and a consequence of central artery stiffening, which in turn is an initiator and indicator of myriad disease conditions and thus all-cause mortality. Such stiffening results from a remodeling of the arterial wall that is driven by mechanical stimuli and mediated by inflammatory signals, which together lead to differential gene expression and concomitant changes in extracellular matrix composition and organization. This review focuses on biomechanical mechanisms by which central arteries remodel in hypertension within the context of homeostasis—what promotes it, what prevents it. It is suggested that the vasoactive capacity of the wall and inflammatory burden strongly influence the ability of homeostatic mechanisms to adapt the arterial wall to high blood pressure or not. Maladaptation, often reflected by inflammation-driven adventitial fibrosis, not just excessive intimal–medial thickening, significantly diminishes central artery function and disturbs hemodynamics, ultimately compromising end organ perfusion and thus driving the associated morbidity and mortality. It is thus suggested that there is a need for increased attention to controlling both smooth muscle phenotype and inflammation in hypertensive remodeling of central arteries, with future studies of the often adaptive response of medium-sized muscular arteries promising to provide additional guidance.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3