Inflammation, Immunity, and Hypertensive End-Organ Damage

Author:

McMaster William G.1,Kirabo Annet1,Madhur Meena S.1,Harrison David G.1

Affiliation:

1. From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN.

Abstract

For >50 years, it has been recognized that immunity contributes to hypertension. Recent data have defined an important role of T cells and various T cell–derived cytokines in several models of experimental hypertension. These studies have shown that stimuli like angiotensin II, deoxycorticosterone acetate-salt, and excessive catecholamines lead to formation of effector like T cells that infiltrate the kidney and perivascular regions of both large arteries and arterioles. There is also accumulation of monocyte/macrophages in these regions. Cytokines released from these cells, including interleukin-17, interferon-γ, tumor necrosis factorα, and interleukin-6 promote both renal and vascular dysfunction and damage, leading to enhanced sodium retention and increased systemic vascular resistance. The renal effects of these cytokines remain to be fully defined, but include enhanced formation of angiotensinogen, increased sodium reabsorption, and increased renal fibrosis. Recent experiments have defined a link between oxidative stress and immune activation in hypertension. These have shown that hypertension is associated with formation of reactive oxygen species in dendritic cells that lead to formation of gamma ketoaldehydes, or isoketals. These rapidly adduct to protein lysines and are presented by dendritic cells as neoantigens that activate T cells and promote hypertension. Thus, cells of both the innate and adaptive immune system contribute to end-organ damage and dysfunction in hypertension. Therapeutic interventions to reduce activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of hypertension, including myocardial infarction, heart failure, renal failure, and stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference98 articles.

1. Autoimmune Factors Associated with Infarction of the Kidney

2. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells.;Okuda T;Tex Rep Biol Med,1967

3. Type and course of the inflammatory cellular reaction in acute angiotensin-hypertensive vascular disease in rats.;Olsen F;Acta Pathol Microbiol Scand A,1970

4. Inflammatory cellular reaction in hypertensive vascular disease in man.;Olsen F;Acta Pathol Microbiol Scand A,1972

5. Depression of T Cell-Mediated Immunity and Enhancement of Autoantibody Production by Natural Infection with Microorganisms in Spontaneously Hypertensive Rats (SHR)

Cited by 537 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3