LncRNA and Protein Expression Profiles Reveal Heart Adaptation to High-Altitude Hypoxia in Tibetan Sheep

Author:

He Zhaohua1ORCID,Li Shaobin1ORCID,Zhao Fangfang1,Sun Hongxian1ORCID,Hu Jiang1,Wang Jiqing1ORCID,Liu Xiu1ORCID,Li Mingna1,Zhao Zhidong1ORCID,Luo Yuzhu1ORCID

Affiliation:

1. Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

Abstract

The Tibetan sheep has an intricate mechanism of adaptation to low oxygen levels, which is influenced by both genetic and environmental factors. The heart plays a crucial role in the adaptation of Tibetan sheep to hypoxia. In the present study, we utilized transcriptomic and proteomic technologies to comprehensively analyze and identify the long non-coding RNAs (lncRNAs), genes, proteins, pathways, and gene ontology (GO) terms associated with hypoxic adaptation in Tibetan sheep at three different altitudes (2500 m, 3500 m, and 4500 m). By integrating the differentially expressed (DE) lncRNA target genes, differentially expressed proteins (DEPs), and differentially expressed genes (DEGs), we were able to identify and characterize the mechanisms underlying hypoxic adaptation in Tibetan sheep. Through this integration, we identified 41 shared genes/proteins, and functional enrichment analyses revealed their close association with lipid metabolism, glycolysis/gluconeogenesis, and angiogenesis. Additionally, significant enrichment was observed in important pathways such as the PPAR signaling pathway, glycolysis/gluconeogenesis, the oxoacid metabolic process, and angiogenesis. Furthermore, the co-expression network of lncRNAs and mRNAs demonstrated that lncRNAs (MSTRG.4748.1, ENSOART00020025894, and ENSOART00020036371) may play a pivotal role in the adaptation of Tibetan sheep to the hypoxic conditions of the plateau. In conclusion, this study expands the existing database of lncRNAs and proteins in Tibetan sheep, and these findings may serve as a reference for the prevention of altitude sickness in humans.

Funder

the National Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3