Wind turbine maximum power point tracking control based on unsupervised neural networks
Author:
Affiliation:
1. Department of Electromechanical Engineering, University of Burgos , Burgos, 09006 , Spain
2. Institute of Knowledge Technology, Complutense University of Madrid , Madrid , Spain
Abstract
Funder
Spanish Ministry of Science and Innovation
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics
Link
https://academic.oup.com/jcde/advance-article-pdf/doi/10.1093/jcde/qwac132/47971623/qwac132.pdf
Reference49 articles.
1. Doubly Fed Induction Machine
2. Design and testing of an MPPT algorithm using an intelligent RBF neural network and optimum relation based strategy;Atiqur Rahman,2020
3. Innovative PID-GA MPPT controller for extraction of maximum power from variable wind turbine;Azzouz;Przegląd Elektrotechniczny,2019
4. Optimal tuning of PI controller using PSO optimization for indirect power control for DFIG based wind turbine with MPPT;Bekakra;International Journal of System Assurance Engineering and Management,2014
5. Optimal tuning of PI controller using genetic algorithm for wind turbine application;Belgaid;Indonesian Journal of Electrical Engineering and Computer Science,2020
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Theoretical Analysis of Meteorological Data as a Road towards Optimizing Wind Energy Generation;Energies;2024-06-05
2. A review and comparative analysis of maximum power point tracking control algorithms for wind energy conversion systems;International Journal of Dynamics and Control;2024-05-11
3. Wind Power Forecasting with Machine Learning Algorithms in Low-Cost Devices;Electronics;2024-04-18
4. Maximum Power Point Tracking control of a variable speed wind turbine via a T-S fuzzy model-based approach;Journal of Intelligent & Fuzzy Systems;2024-04-18
5. Review on the Application of Artificial Intelligence Methods in the Control and Design of Offshore Wind Power Systems;Journal of Marine Science and Engineering;2024-02-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3