Maximum Power Point Tracking control of a variable speed wind turbine via a T-S fuzzy model-based approach

Author:

Allouche Moez1,Dahech Karim1,Gaubert Jean-Paul2

Affiliation:

1. Laboratory of Sciences and Techniques of Automatic Control & Computer Engineering (Lab-STA), University of Sfax, Tunisia

2. Laboratory of Computer Science and Automatic Control for Systems, University of Poitiers, France

Abstract

This paper proposes a multi-objective H2/H ∞ maximum power tracking control of a variable speed wind turbine to minimize the H2 tracking error and ensure the H ∞ model reference-tracking performance, simultaneously. The optimal condition is obtained via a boost converter use, which adapts the load impedance to the wind turbine generator. Thus, based on the fuzzy T-S model, a multi-objective Maximum Power Point Tracking (MPPT) controller is developed, ensuring maximum power transfer, despite wind speed variation and system uncertainty. To specify the optimal trajectory to follow, a TS reference model is proposed taking as input the optimal rectified DC current. The conditions of stability and stabilization are expressed in terms of linear matrix inequality (LMI) for uncertain and disturbed T-S models leading to determining the controller gains. Finally, an example of MPP tracking applied to a Wind Energy Conversion System (WECS) illustrates the effectiveness of the proposed fuzzy control law.

Publisher

IOS Press

Reference20 articles.

1. A review of maximum power point tracking algorithms for wind energy conversion systems;Pande;Journal of Marine Science and Engineering,2021

2. Maximum power point tracking algorithms for wind power generation system: Review, comparison and analysis;Zhang;Energy Science & Engineering,2021

3. A fuzzy logic-based MPPT technique for PMSG wind generation system;Ahmed;International Journal of Renewable Energy Research,2019

4. Multiobjective maximum power tracking control of photovoltaic systems: T-S fuzzy model-based approach;Allouche;Soft Computing Journal,2018

5. Palomeque E.M. , Sierra-García J. En and Santos M. , Wind turbine maximum power point tracking control based on unsupervised neural networks, 10 (2023), 108–121.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3