Drought affects the fate of non-structural carbohydrates in hynoki cypress

Author:

Tsuji Chiaki1,Dannoura Masako12,Desalme Dorine3,Angeli Nicolas3,Takanashi Satoru4,Kominami Yuji5,Epron Daniel23

Affiliation:

1. Graduate School of Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

2. Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

3. Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 34 cours Léopold, Nancy F-54000, France

4. Forestry and Forest Products Research Institute, Kansai Research Centre, 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan

5. Forestry and Forest Products Research Institute, 1 Matsunosato, Ibaraki, Tsukuba 305-8687, Japan

Abstract

Abstract Tree species that close stomata early in response to drought are likely to suffer from an imbalance between limited carbohydrate supply due to reduced photosynthesis and metabolic demand. Our objective was to clarify the dynamic responses of non-structural carbohydrates to drought in a water-saving species, the hynoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). To this end, we pulse-labeled young trees with 13CO2 10 days after the beginning of the drought treatment. Trees were harvested 7 days later, early during drought progression, and 86 days later when they had suffered from a long and severe drought. The labeled carbon (C) was traced in phloem extract, in the organic matter and starch of all the organs, and in the soluble sugars (sucrose, glucose and fructose) of the most metabolically active organs (foliage, green branches and fine roots). No drought-related changes in labeled C partitioning between belowground and aboveground organs were observed. The C allocation between non-structural carbohydrates was altered early during drought progression: starch concentration was lower by half in the photosynthetic organs, while the concentration of almost all soluble sugars tended to increase. The preferential allocation of labeled C to glucose and fructose reflected an increased demand for soluble sugars for osmotic adjustment. After 3 months of a lethal drought, the concentrations of soluble sugars and starch were admittedly lower in drought-stressed trees than in the controls, but the pool of non-structural carbohydrates was far from completely depleted. However, the allocation to storage had been impaired by drought; photosynthesis and the sugar translocation rate had also been reduced by drought. Failure to maintain cell turgor through osmoregulation and to refill embolized xylem due to the depletion in soluble sugars in the roots could have resulted in tree mortality in hynoki cypress, though the total pool of carbohydrate was not completely depleted.

Funder

Japan Society for the Promotion Science

Japan Student Services Organization

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3