Responses of Physiological Traits and Soil Properties in Pinus thunbergia and Euonymus japonicus Saplings under Drought and Cadmium (Cd) Stress

Author:

Li Shan1,Wang Jing1,Lu Sen1,Li Huan1,Guo Junkang1

Affiliation:

1. Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

Pinus thunbergii and Euonymus japonicus are two species commonly found in arid and semi-arid areas; however, their responses in terms of physiological traits and soil properties under drought and cadmium (Cd) stress are not clear. In this study, we carried out single and combined stress treatments consisting of drought and Cd on saplings of P. thunbergii and E. japonicus and investigated the responses in terms of the physiological traits and soil properties of both species. For both species, under single Cd stress, Cd was observed in both the xylem and phloem, while the root Cd2+ flow rate fluctuated at different levels of Cd stress. Under both single and combined stress, as the stress level increased, the abscisic acid (ABA) content of the leaves and roots increased significantly, while the indole-3-acetic acid (IAA) content of the leaves and roots decreased significantly. Moreover, the non-structural carbohydrate (NSC) content of the leaves, stems, and roots, as well as the leaf chlorophyll content, decreased significantly. Under drought stress, the xylem water potential and hydraulic conductivity significantly decreased, which was exacerbated by Cd stress; this led to a more significant decrease in water potential and hydraulic conductivity under the combined stresses. Meanwhile, no significant changes in the conduit lumen diameter and double-wall thickness were observed, except for the double cell wall thickness of the P. thunbergii tracheid, which increased. In addition, both the single stresses and the combined stress of drought and Cd induced significant changes in the soil properties of the two species, i.e., the ammonium nitrogen, nitrate nitrogen, and effective phosphorus of the soil increased significantly, and the increase in content was more significant under combined stress. The diversity of the soil microbial community of P. thunbergii saplings significantly increased, while no change was found in its microbial community abundance under the single stresses and combined stress; however, the diversity and abundance of the soil microbial community in E. japonicus saplings showed the opposite pattern, which indicates that the effect of Cd on soil microorganisms is more significant than the effect of drought. The activity of sucrase and catalase in P. thunbergii soil fluctuated under the single stress and combined stress when compared, and the activity of sucrase in the soil of the E. japonicus species decreased. However, its catalase activity increased significantly under the single drought and Cd stress and combined stress when compared. We found that the combined stresses exacerbated the effects of the single stress in both species. Our study provides more detailed information on the responses in terms of the physiological traits and soil properties of the two species under single and combined stress consisting of drought and Cd.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi

Talent Project of Shaanxi University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3