Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels

Author:

Wu Qiang-Sheng12ORCID,He Jia-Dong1,Srivastava A K13,Zou Ying-Ning1,Kuča Kamil2

Affiliation:

1. College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China

2. Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic

3. Central Citrus Research Institute, Indian Council of Agricultural Research, Nagpur, Maharashtra, India

Abstract

Abstract Arbuscular mycorrhizas (AMs) have the ability to enhance drought tolerance of citrus, but the underlying mechanisms have not been clearly elucidated. Considering the strong association of cell membrane fatty acid (FA) unsaturation with plant drought tolerance, the present study hypothesized that AM fungi (AMF) modulated the composition and unsaturation of FAs to enhance drought tolerance of host plants. Drought-sensitive citrus rootstocks, trifoliate orange (Poncirus trifoliata) seedlings, were inoculated with AMF (Funneliformis mosseae) for 3 months and were subsequently exposed to drought stress (DS) for 8 weeks. Mycorrhizal seedlings exhibited better plant growth performance, higher leaf water potential and lower root abscisic acid concentrations under both well-watered (WW) and DS conditions. Arbuscular mycorrhiza fungus inoculation considerably increased root methyl oleate (C18:1), methyl linoleate (C18:2) and methyl linolenate (C18:3N3) concentrations under both WW and DS conditions, and root methyl palmitoleate (C16:1) concentrations under WW, while it decreased root methyl stearate (C18:0) levels under both WW and DS. These changes in the composition of FAs of mycorrhized roots resulted in higher unsaturation index of root FAs, which later aided in reducing the oxidative damage on account of lower concentration of malondialdehyde and superoxide radicals. The changes of these FAs were a result of AMF-up-regulating root FA desaturase 2 (PtFAD2), FA desaturase 6 (PtFAD6) and Δ9 FA desaturase (PtΔ9) genes under WW and PtFAD2, PtFAD6 and Δ15 FA desaturase (PtΔ15) genes under DS conditions. Our results confirmed that mycorrhization brought significant changes in root FA compositions, in addition to regulation of gene expression responsible for increasing the unsaturation level of FAs, a predisposing physiological event for better drought tolerance of citrus.

Funder

National Key Research and Development Program of China

Hubei Provincial Department of Education

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3