Arbuscular Mycorrhizal Fungi Regulate Lipid and Amino Acid Metabolic Pathways to Promote the Growth of Poncirus trifoliata (L.) Raf

Author:

Kang Yihao12,Twagirayezu Gratien34ORCID,Xu Jie1,Wen Yunying12,Shang Pengxiang2,Song Juan1,Wang Qian1,Li Xianliang5,Liu Shengqiu5,Chen Tingsu1,Cheng Tong6ORCID,Zhang Jinlian1ORCID

Affiliation:

1. Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China

2. School of Public Health, Xiamen University, Xiamen 361102, China

3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Guangxi Academy of Specialty Crops, Guilin 541004, China

6. School of Life Sciences, Xiamen University, Xiamen 361102, China

Abstract

Arbuscular mycorrhizal (AM) fungi can enhance the uptake of soil nutrients and water by citrus, promoting its growth. However, the specific mechanisms underlying the action of AM fungi in promoting the growth of citrus were not fully elucidated. This study aimed to explore the role of AM fungi Funneliformis mosseae in the regulatory mechanisms of P. trifoliata growth. Pot experiments combined with non-targeted metabolomics methods were used to observe the growth process and changes in metabolic products of P. trifoliata under the conditions of F. mosseae inoculation. The results showed that F. mosseae could form an excellent symbiotic relationship with P. trifoliata, thereby enhancing the utilization of soil nutrients and significantly promoting its growth. Compared with the control, the plant height, stem diameter, number of leaves, and aboveground and underground dry weight in the F. mosseae inoculation significantly increased by 2.57, 1.29, 1.57, 4.25, and 2.78 times, respectively. Moreover, the root system results confirmed that F. mosseae could substantially promote the growth of P. trifoliata. Meanwhile, the metabolomics data indicated that 361 differential metabolites and 56 metabolic pathways were identified in the roots of P. trifoliata and were inoculated with F. mosseae. This study revealed that the inoculated F. mosseae could participate in ABC transporters by upregulating their participation, glycerophospholipid metabolism, aminoacyl tRNA biosynthesis, tryptophan metabolism and metabolites from five metabolic pathways of benzoxazinoid biosynthesis [mainly enriched in lipid (39.50%) and amino acid-related metabolic pathways] to promote the growth of P. trifoliata.

Funder

Guangxi Academy of Agricultural Sciences project

Guangxi Science and Technology Major projects

the cooperative projects with Xiamen University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3