AutoCriteria: a generalizable clinical trial eligibility criteria extraction system powered by large language models

Author:

Datta Surabhi1ORCID,Lee Kyeryoung1,Paek Hunki1,Manion Frank J1,Ofoegbu Nneka1,Du Jingcheng1ORCID,Li Ying2,Huang Liang-Chin1,Wang Jingqi1,Lin Bin1,Xu Hua3,Wang Xiaoyan1

Affiliation:

1. Melax Technologies , Houston, TX 77030, United States

2. Regeneron Pharmaceuticals , Tarrytown, NY 10591, United States

3. Yale School of Medicine , New Haven, CT 06511, United States

Abstract

Abstract Objectives We aim to build a generalizable information extraction system leveraging large language models to extract granular eligibility criteria information for diverse diseases from free text clinical trial protocol documents. We investigate the model’s capability to extract criteria entities along with contextual attributes including values, temporality, and modifiers and present the strengths and limitations of this system. Materials and Methods The clinical trial data were acquired from https://ClinicalTrials.gov/. We developed a system, AutoCriteria, which comprises the following modules: preprocessing, knowledge ingestion, prompt modeling based on GPT, postprocessing, and interim evaluation. The final system evaluation was performed, both quantitatively and qualitatively, on 180 manually annotated trials encompassing 9 diseases. Results AutoCriteria achieves an overall F1 score of 89.42 across all 9 diseases in extracting the criteria entities, with the highest being 95.44 for nonalcoholic steatohepatitis and the lowest of 84.10 for breast cancer. Its overall accuracy is 78.95% in identifying all contextual information across all diseases. Our thematic analysis indicated accurate logic interpretation of criteria as one of the strengths and overlooking/neglecting the main criteria as one of the weaknesses of AutoCriteria. Discussion AutoCriteria demonstrates strong potential to extract granular eligibility criteria information from trial documents without requiring manual annotations. The prompts developed for AutoCriteria generalize well across different disease areas. Our evaluation suggests that the system handles complex scenarios including multiple arm conditions and logics. Conclusion AutoCriteria currently encompasses a diverse range of diseases and holds potential to extend to more in the future. This signifies a generalizable and scalable solution, poised to address the complexities of clinical trial application in real-world settings.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3