Prompt Engineering Paradigms for Medical Applications: Scoping Review

Author:

Zaghir JamilORCID,Naguib MarcoORCID,Bjelogrlic MinaORCID,Névéol AurélieORCID,Tannier XavierORCID,Lovis ChristianORCID

Abstract

Background Prompt engineering, focusing on crafting effective prompts to large language models (LLMs), has garnered attention for its capabilities at harnessing the potential of LLMs. This is even more crucial in the medical domain due to its specialized terminology and language technicity. Clinical natural language processing applications must navigate complex language and ensure privacy compliance. Prompt engineering offers a novel approach by designing tailored prompts to guide models in exploiting clinically relevant information from complex medical texts. Despite its promise, the efficacy of prompt engineering in the medical domain remains to be fully explored. Objective The aim of the study is to review research efforts and technical approaches in prompt engineering for medical applications as well as provide an overview of opportunities and challenges for clinical practice. Methods Databases indexing the fields of medicine, computer science, and medical informatics were queried in order to identify relevant published papers. Since prompt engineering is an emerging field, preprint databases were also considered. Multiple data were extracted, such as the prompt paradigm, the involved LLMs, the languages of the study, the domain of the topic, the baselines, and several learning, design, and architecture strategies specific to prompt engineering. We include studies that apply prompt engineering–based methods to the medical domain, published between 2022 and 2024, and covering multiple prompt paradigms such as prompt learning (PL), prompt tuning (PT), and prompt design (PD). Results We included 114 recent prompt engineering studies. Among the 3 prompt paradigms, we have observed that PD is the most prevalent (78 papers). In 12 papers, PD, PL, and PT terms were used interchangeably. While ChatGPT is the most commonly used LLM, we have identified 7 studies using this LLM on a sensitive clinical data set. Chain-of-thought, present in 17 studies, emerges as the most frequent PD technique. While PL and PT papers typically provide a baseline for evaluating prompt-based approaches, 61% (48/78) of the PD studies do not report any nonprompt-related baseline. Finally, we individually examine each of the key prompt engineering–specific information reported across papers and find that many studies neglect to explicitly mention them, posing a challenge for advancing prompt engineering research. Conclusions In addition to reporting on trends and the scientific landscape of prompt engineering, we provide reporting guidelines for future studies to help advance research in the medical field. We also disclose tables and figures summarizing medical prompt engineering papers available and hope that future contributions will leverage these existing works to better advance the field.

Publisher

JMIR Publications Inc.

Reference127 articles.

1. BrownTMannBRyderNSubbiahMKaplanJDDhariwalPNeelakantanAShyamPSastryGAskellALanguage models are few-shot learners2020Advances in Neural Information Processing SystemsDecember 6, 2020Virtual18771901

2. KojimaTGuSSReidMMatsuoYIwasawaYLarge language models are zero-shot reasoners2022Advances in Neural Information Processing SystemsNovember 28, 2022New Orleans2219922213

3. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

4. Clinical Natural Language Processing in languages other than English: opportunities and challenges

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3