EliIE: An open-source information extraction system for clinical trial eligibility criteria

Author:

Kang Tian1,Zhang Shaodian1,Tang Youlan2,Hruby Gregory W1,Rusanov Alexander1,Elhadad Noémie1,Weng Chunhua1

Affiliation:

1. Department of Biomedical Informatics, Columbia University, New York, NY, USA

2. Institute of Human Nutrition, Columbia University, New York, NY, USA

Abstract

Abstract Objective To develop an open-source information extraction system called Eligibility Criteria Information Extraction (EliIE) for parsing and formalizing free-text clinical research eligibility criteria (EC) following Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) version 5.0. Materials and Methods EliIE parses EC in 4 steps: (1) clinical entity and attribute recognition, (2) negation detection, (3) relation extraction, and (4) concept normalization and output structuring. Informaticians and domain experts were recruited to design an annotation guideline and generate a training corpus of annotated EC for 230 Alzheimer’s clinical trials, which were represented as queries against the OMOP CDM and included 8008 entities, 3550 attributes, and 3529 relations. A sequence labeling–based method was developed for automatic entity and attribute recognition. Negation detection was supported by NegEx and a set of predefined rules. Relation extraction was achieved by a support vector machine classifier. We further performed terminology-based concept normalization and output structuring. Results In task-specific evaluations, the best F1 score for entity recognition was 0.79, and for relation extraction was 0.89. The accuracy of negation detection was 0.94. The overall accuracy for query formalization was 0.71 in an end-to-end evaluation. Conclusions This study presents EliIE, an OMOP CDM–based information extraction system for automatic structuring and formalization of free-text EC. According to our evaluation, machine learning-based EliIE outperforms existing systems and shows promise to improve.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3