Affiliation:
1. State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. C
2. School of Life Sciences and Engineering, Foshan University, Foshan 528225, P.R. China
Abstract
Abstract
This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg−1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg−1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1β, IL-8, and tumor necrosis factor-α), porcine β-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.
Funder
National Key Research and Development Program of China
Special Foundation of President of Agricultural Sciences, China
Guangdong Basic and Applied Basic Research Foundation
Guangdong Provincial Department of Education
Discipline Team Construction Projects of the 13th Five-Year Plan
China Agriculture Research System
Guangdong Modern Agricultural Research System
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献