Breed and heterotic effects for mature weight in beef cattle

Author:

Zimmermann Madeline J1,Kuehn Larry A2ORCID,Spangler Matthew L1,Thallman R Mark2,Snelling Warren M2ORCID,Lewis Ronald M1ORCID

Affiliation:

1. Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE 68583, USA

2. Roman L. Hruska U.S. Meat Animal Research Center, USDA, ARS, Clay Center, NE 68933, USA

Abstract

Abstract Cow mature weight (MWT) is heritable and affects the costs and efficiency of a breeding operation. Cow weight is also influenced by the environment, and the relationship between the size and profitability of a cow varies depending on production system. Producers, therefore, need tools to incorporate MWT in their selection of cattle breeds and herd replacements. The objective of this study was to estimate breed and heterotic effects for MWT using weight-age data on crossbred cows. Cow’s MWT at 6 yr was predicted from the estimated parameter values—asymptotic weight and maturation constant (k)—from the fit of the Brody function to their individual data. Values were obtained for 5,156 crossbred cows from the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation Program using 108,957 weight records collected from approximately weaning up to 6 yr of age. The cows were produced from crosses among 18 beef breeds. A bivariate animal model was fitted to the MWT and k obtained for each cow. The fixed effects were birth year-season contemporary group and covariates of direct and maternal breed fractions, direct and maternal heterosis, and age at final weighing. The random effects were direct additive and residual. A maternal additive random effect was also fitted for k. In a separate analysis from that used to estimate breed effects and (co)variances, cow MWT was regressed on sire yearling weight (YWT) Expected Progeny Differences by its addition as a covariate to the animal model fitted for MWT. That regression coefficient was then used to adjust breed solutions for sire selection in the USMARC herd. Direct heterosis was 15.3 ± 2.6 kg for MWT and 0.000118 ± 0.000029 d−1 for k. Maternal heterosis was −5.7 ± 3.0 kg for MWT and 0.000130 ± 0.000035 d−1 for k. Direct additive heritabilities were 0.56 ± 0.03 for MWT and 0.23 ± 0.03 for k. The maternal additive heritability for k was 0.11 ± 0.02. The direct additive correlation between MWT and k was negligible (0.08 ± 0.09). Adjusted for sire sampling, Angus was heaviest at maturity of the breeds compared. Deviations from Angus ranged from −8.9 kg (Charolais) to −136.7 kg (Braunvieh). Ordered by decreasing MWT, the breeds ranked Angus, Charolais, Hereford, Brahman, Salers, Santa Gertrudis, Simmental, Maine Anjou, Limousin, Red Angus, Brangus, Chiangus, Shorthorn, Gelbvieh, Beefmaster, and Braunvieh. These breed effects for MWT can inform breeding programs where cow size is considered a key component of the overall profitability.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3