Plasticity of phenotype and heteroblasty in contrasting populations of Acacia koa

Author:

Rose Kyle M E12,Mickelbart Michael V3,Jacobs Douglass F1

Affiliation:

1. Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA

2. Department of Natural Resources Management, New Mexico Highlands University, Las Vegas, NM, USA

3. Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA

Abstract

Abstract Background and Aims Heteroblastic plant species, whose morphology or growth habit changes suddenly during development, offer unique opportunities to investigate the role of selection in canalizing development or increasing the adaptive importance of plasticity. Leaf forms of the Hawaiian tree Acacia koa (koa) change morphologically and physiologically during the first year of growth, providing time to study abiotic factors influencing transition rates relative to other Acacia species. Methods The roles of light and water availability in triggering transition to the mature leaf form in contrasting (wet/dry) ecotypes of koa were investigated using a novel modelling technique to distinguish between chronological and ontogenetic controls in triggering transition. A light quality treatment was included to test interactions of heterophylly (the presence of multiple leaf forms) with heteroblastic processes on the resulting phenotype at transition. Key Results Increased light intensity increased transition rates, but reduced red to far-red light (R:FR) ratios did not affect transition rates, solidifying the current paradigm of heteroblasty. However, evidence was found for earlier transition ontogenetically under water stress, which is not part of the current paradigm and could differentiate the role of heteroblasty in some Acacia species versus other heteroblastic species. Ecotypic responses also indicate that plasticity of development could vary across koa’s range and the adaptive significance of heteroblasty could be marginalized or amplified dependent on the disparate selective pressures present across koa’s range. Conclusions The use of novel survival functions and a species with an elongated transition time helped to elucidate abiotic modifiers of ontogenetic trajectories. Differences in ontogenetic trajectories between contrasting ecotypes suggest that ongoing climate and land use change will have non-uniform effects on koa regeneration and establishment dynamics across its range.

Funder

Purdue University

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3