Co-limitation of resources reveals adaptations of a tropical tree to heterogeneous environments along an elevational cline

Author:

Paudel Indira,Rose Kyle M. E.,Landhäusser Simon M.,Jacobs Douglass F.

Abstract

IntroductionPlant species often exhibit significant variation in functional traits in populations along elevational gradients to cope with varying stress conditions. While plant development has been assumed to be most limited by a single resource, growing evidence suggests the potential for interactions of co-limiting resources to impact plant performance. Here, we aimed to determine how light, nitrogen, and water availability influence the growth and physiology of different populations of koa (Acacia koa), a tree species of concern that occurs across a large elevational gradient in tropical Hawaii, United States.MethodsPopulations from three seed sources [low (L), mid (M), and high (H) elevation] were grown in a controlled greenhouse experiment and exposed to co-limiting light, water, and nutrient (nitrogen) conditions. Light response, gas exchange, water status, resource use efficiency, nutrients and shoot non-structural carbohydrate concentrations, and growth and biomass allocation responses were quantified.ResultsWe found that resource co-limitation sometimes interacted to determine responses of the measured parameters. In general, the low elevation (L) koa population was more sensitive to conditions where both moisture and nutrients were limiting, while the high elevation (H) koa population was more sensitive to conditions where either light and moisture or light and nitrogen were co-limiting. The M population performed well overall regardless of resource limitation.DiscussionOur findings lend support to the theory that multiple resources limit growth and physiology of populations rather than the traditional view of a single resource limiting performance. Therefore, the possibility that multiple resource limitations drive population differences should be considered when developing population-based guidelines for forest and tree species restoration.

Funder

Purdue University

National Institute of Food and Agriculture

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3