The Effect of Hot Wind on Needle and Stem Water Status: Response Strategies in Resprouting and Non-Resprouting Pine Species

Author:

Pita Pilar12,López Rosana12ORCID,Gil Luis1

Affiliation:

1. Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, José Antonio Novais 10, 28040 Madrid, Spain

2. Research Group: Functioning of Forest Systems in a Changing Environment (FORESCENT), Universidad Politécnica de Madrid, José Antonio Novais 10, 28040 Madrid, Spain

Abstract

High temperatures threaten tree survival and regeneration. A few pine species, such as Pinus oocarpa and Pinus canariensis, resprout after complete defoliation, a likely consequence of evolving in volcanic environments. Pinus pinea and Pinus pinaster rely on other mechanisms to survive wildfires. We hypothesized that the needle water potential (Ψ) and needle osmotic potential (Ψs) would decrease more under hot wind in resprouting species, a strategy of needle sacrifice in accordance with the hydraulic segmentation hypothesis. We submitted two-year-old seedlings to a two-phase hot wind treatment, consisting of one hour at 39 °C followed by five minutes at 70 °C. Phase 2 killed all needles. In non-resprouting species, Ψ decreased steeply at the beginning of Phase 1 and remained between −2 MPa and −4 MPa afterward, maintaining the loss of stem hydraulic conductance below the 50% threshold. On average, resprouting species had 15% lower wood densities and kept 51% higher stem water contents than non-resprouting species after Phase 2. The loss of hydraulic conductance did not affect resprouting. The increase in hydraulic conductance toward the base of the stem was lowest in P. canariensis, suggesting a lower degree of conduit tapering in the only species that had not undergone heteroblastic change. We measured the lowest Ψ and highest Ψs in the most xeric P. canariensis and the opposite in the most mesic P. oocarpa, highlighting the roles of xylary and extra-xylary hydraulic resistances in compartmentalizing the needle to preserve the stem. The measurement of both Ψ and Ψs allowed us to characterize the strategies of response to hot wind in resprouting and non-resprouting pine species.

Funder

Spanish Ministerio de Economía y Competitividad

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3