PharmBERT: a domain-specific BERT model for drug labels

Author:

ValizadehAslani Taha12,Shi Yiwen3,Ren Ping45,Wang Jing45,Zhang Yi45,Hu Meng45,Zhao Liang45,Liang Hualou67ORCID

Affiliation:

1. Department of Electrical and Computer Engineering , College of Engineering, , Philadelphia, PA , USA

2. Drexel University , College of Engineering, , Philadelphia, PA , USA

3. College of Computing and Informatics, Drexel University , Philadelphia, PA , USA

4. Office of Research and Standards , Office of Generic Drugs, Center for Drug Evaluation and Research, , Silver Spring, MD , USA

5. United States Food and Drug Administration , Office of Generic Drugs, Center for Drug Evaluation and Research, , Silver Spring, MD , USA

6. School of Biomedical Engineering , Science and Health Systems, , Philadelphia, PA , USA

7. Drexel University , Science and Health Systems, , Philadelphia, PA , USA

Abstract

Abstract Human prescription drug labeling contains a summary of the essential scientific information needed for the safe and effective use of the drug and includes the Prescribing Information, FDA-approved patient labeling (Medication Guides, Patient Package Inserts and/or Instructions for Use), and/or carton and container labeling. Drug labeling contains critical information about drug products, such as pharmacokinetics and adverse events. Automatic information extraction from drug labels may facilitate finding the adverse reaction of the drugs or finding the interaction of one drug with another drug. Natural language processing (NLP) techniques, especially recently developed Bidirectional Encoder Representations from Transformers (BERT), have exhibited exceptional merits in text-based information extraction. A common paradigm in training BERT is to pretrain the model on large unlabeled generic language corpora, so that the model learns the distribution of the words in the language, and then fine-tune on a downstream task. In this paper, first, we show the uniqueness of language used in drug labels, which therefore cannot be optimally handled by other BERT models. Then, we present the developed PharmBERT, which is a BERT model specifically pretrained on the drug labels (publicly available at Hugging Face). We demonstrate that our model outperforms the vanilla BERT, ClinicalBERT and BioBERT in multiple NLP tasks in the drug label domain. Moreover, how the domain-specific pretraining has contributed to the superior performance of PharmBERT is demonstrated by analyzing different layers of PharmBERT, and more insight into how it understands different linguistic aspects of the data is gained.

Funder

United States Food and Drug Administration

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3