Information Extraction From FDA Drug Labeling to Enhance Product-Specific Guidance Assessment Using Natural Language Processing

Author:

Shi Yiwen,Ren Ping,Zhang Yi,Gong Xiajing,Hu Meng,Liang Hualou

Abstract

Towards the objectives of the UnitedStates Food and Drug Administration (FDA) generic drug science and research program, it is of vital importance in developing product-specific guidances (PSGs) with recommendations that can facilitate and guide generic product development. To generate a PSG, the assessor needs to retrieve supportive information about the drug product of interest, including from the drug labeling, which contain comprehensive information about drug products and instructions to physicians on how to use the products for treatment. Currently, although there are many drug labeling data resources, none of them including those developed by the FDA (e.g., Drugs@FDA) can cover all the FDA-approved drug products. Furthermore, these resources, housed in various locations, are often in forms that are not compatible or interoperable with each other. Therefore, there is a great demand for retrieving useful information from a large number of textual documents from different data resources to support an effective PSG development. To meet the needs, we developed a Natural Language Processing (NLP) pipeline by integrating multiple disparate publicly available data resources to extract drug product information with minimal human intervention. We provided a case study for identifying food effect information to illustrate how a machine learning model is employed to achieve accurate paragraph labeling. We showed that the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model is able to outperform the traditional machine learning techniques, setting a new state-of-the-art for labelling food effect paragraphs from drug labeling and approved drug products datasets.

Publisher

Frontiers Media SA

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of artificial intelligence in drug design: A review;Computers in Biology and Medicine;2024-09

2. Two-stage fine-tuning with ChatGPT data augmentation for learning class-imbalanced data;Neurocomputing;2024-08

3. Model‐informed Drug Development ( MIDD ) Regarding Regulatory Requirements and Thinking;Exploring Computational Pharmaceutics ‐ AI and Modeling in Pharma 4.0;2024-06-21

4. Extracting Information from Drug Label Using Image and Text Processing;2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE);2024-06-19

5. Knowledge-guided generative artificial intelligence for automated taxonomy learning from drug labels;Journal of the American Medical Informatics Association;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3