MVML-MPI: Multi-View Multi-Label Learning for Metabolic Pathway Inference

Author:

Liu Xiaoyi1,Yang Hongpeng1,Ai Chengwei2,Ding Yijie3,Guo Fei2,Tang Jijun4

Affiliation:

1. Computer Science and Engineering, University of South Carolina , Columbia 29208 , USA

2. Computer Science and Engineering, Central South University , Changsha 410083 , China

3. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China , Quzhou 324000 , China

4. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , Nanshan 518055 , China

Abstract

Abstract Development of robust and effective strategies for synthesizing new compounds, drug targeting and constructing GEnome-scale Metabolic models (GEMs) requires a deep understanding of the underlying biological processes. A critical step in achieving this goal is accurately identifying the categories of pathways in which a compound participated. However, current machine learning-based methods often overlook the multifaceted nature of compounds, resulting in inaccurate pathway predictions. Therefore, we present a novel framework on Multi-View Multi-Label Learning for Metabolic Pathway Inference, hereby named MVML-MPI. First, MVML-MPI learns the distinct compound representations in parallel with corresponding compound encoders to fully extract features. Subsequently, we propose an attention-based mechanism that offers a fusion module to complement these multi-view representations. As a result, MVML-MPI accurately represents and effectively captures the complex relationship between compounds and metabolic pathways and distinguishes itself from current machine learning-based methods. In experiments conducted on the Kyoto Encyclopedia of Genes and Genomes pathways dataset, MVML-MPI outperformed state-of-the-art methods, demonstrating the superiority of MVML-MPI and its potential to utilize the field of metabolic pathway design, which can aid in optimizing drug-like compounds and facilitating the development of GEMs. The code and data underlying this article are freely available at https://github.com/guofei-tju/MVML-MPI. Contact:  jtang@cse.sc.edu, guofei@csu.edu.com or wuxi_dyj@csj.uestc.edu.cn

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Excellent Young Scientists Fund in Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Zhejiang Provincial Natural Science Foundation of China

Municipal Government of Quzhou

High Performance Computing Center of Central South University

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3