A Framework of Multi-View Machine Learning for Biological Spectral Unmixing of Fluorophores with Overlapping Excitation and Emission Spectra

Author:

Wang Ruogu,Feng Yunlong,Valm Alex M.

Abstract

The accuracy in assigning fluorophore identity and abundance, termed spectral unmixing, in biological fluorescence microscopy images remains challenging due to the unavoidable and significant overlap in emission spectra among fluorophores. In conventional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. As a matter of fact, organic fluorophores have not only unique emission spectral signatures but also have unique and characteristic excitation spectra. In this paper, we propose a generalized multi-view machine learning approach, which makes use of both excitation and emission spectra to greatly improve the accuracy in differentiating multiple highly overlapping fluorophores in a single image. By recording emission spectra of the same field with multiple combinations of excitation wavelengths, we obtain data representing these different views of the underlying fluorophore distribution in the sample. We then propose a framework of multi-view machine learning methods, which allows us to flexibly incorporate noise information and abundance constraints, to extract the spectral signatures of fluorophores from their reference images and to efficiently recover their corresponding abundances in unknown mixed images. Numerical experiments on simulated image data demonstrate the method’s efficacy in improving accuracy, allowing for the discrimination of 100 fluorophores with highly overlapping spectra. Furthermore, validation on images of mixtures of fluorescently labeled E. coli demonstrates the power of the proposed multi-view strategy in discriminating fluorophores with spectral overlap in real biological images.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3